Ribonuclease PH plays a major role in the exonucleolytic maturation of CCA-containing tRNA precursors in Bacillus subtilis

نویسندگان

  • Tingyi Wen
  • Irina A. Oussenko
  • Olivier Pellegrini
  • David H. Bechhofer
  • Ciarán Condon
چکیده

In contrast to Escherichia coli, where all tRNAs have the CCA motif encoded by their genes, two classes of tRNA precursors exist in the Gram-positive bacterium Bacillus subtilis. Previous evidence had shown that ribonuclease Z (RNase Z) was responsible for the endonucleolytic maturation of the 3' end of those tRNAs lacking an encoded CCA motif, accounting for about one-third of its tRNAs. This suggested that a second pathway of tRNA maturation must exist for those precursors with an encoded CCA motif. In this paper, we examine the potential role of the four known exoribonucleases of B.subtilis, PNPase, RNase R, RNase PH and YhaM, in this alternative pathway. In the absence of RNase PH, precursors of CCA-containing tRNAs accumulate that are a few nucleotides longer than the mature tRNA species observed in wild-type strains or in the other single exonuclease mutants. Thus, RNase PH plays an important role in removing the last few nucleotides of the tRNA precursor in vivo. The presence of three or four exonuclease mutations in a single strain results in CCA-containing tRNA precursors of increasing size, suggesting that, as in E.coli, the exonucleolytic pathway consists of multiple redundant enzymes. Assays of purified RNase PH using in vitro-synthesized tRNA precursor substrates suggest that RNase PH is sensitive to the presence of a CCA motif. The division of labor between the endonucleolytic and exonucleolytic pathways observed in vivo can be explained by the inhibition of RNase Z by the CCA motif in CCA-containing tRNA precursors and by the inhibition of exonucleases by stable secondary structure in the 3' extensions of the majority of CCA-less tRNAs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ribonuclease P processes polycistronic tRNA transcripts in Escherichia coli independent of ribonuclease E

The first step in the current model for the processing and maturation of mono- and polycistronic tRNA precursors in Escherichia coli involves initial cleavages by RNase E 1-3 nt downstream of each chromosomally encoded CCA determinant. Subsequently, each mature 5' terminus is generated by single RNase P cleavage, while the 3' terminus undergoes exonucleolytic processing by a combination of 3' -...

متن کامل

Critical Minireview: The Fate of tRNACys during Oxidative Stress in Bacillus subtilis

Oxidative stress occurs when cells are exposed to elevated levels of reactive oxygen species that can damage biological molecules. One bacterial response to oxidative stress involves disulfide bond formation either between protein thiols or between protein thiols and low-molecular-weight (LMW) thiols. Bacillithiol was recently identified as a major low-molecular-weight thiol in Bacillus subtili...

متن کامل

Activities of RNase BN in vivo Exoribonuclease and Endoribonuclease Activities of RNase BN/RNase Z Both Function In Vivo*

Escherichia coli RNase BN, a member of the RNase Z family of endoribonucleases, differs from other family members in that it also can act as an exoribonuclease in vitro. Here, we examine whether this activity of RNase BN also functions in vivo. Comparison of the X-ray structure of RNase BN with that of Bacillus subtilis RNase Z, which lacks exoribonuclease activity, revealed that RNase BN has a...

متن کامل

In vivo and in vitro investigation of bacterial type B RNase P interaction with tRNA 3′-CCA

For catalysis by bacterial type B RNase P, the importance of a specific interaction with p(recursor)tRNA 3'-CCA termini is yet unclear. We show that mutation of one of the two G residues assumed to interact with 3'-CCA in type B RNase P RNAs inhibits cell growth, but cell viability is at least partially restored at increased RNase P levels due to RNase P protein overexpression. The in vivo defe...

متن کامل

Processing of a multimeric tRNA precursor from Bacillus subtilis by the RNA component of RNase P.

Processing of multimeric precursor tRNAs from Bacillus subtilis by the catalytic RNA component of RNase P was studied in vitro. Previous studies on processing by either Escherichia coli or B. subtilis RNase P-RNA utilized monomeric or dimeric substrates. In the experiments described here, a multimeric precursor tRNA containing six complete tRNA sequences and the partial sequence of a seventh we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2005